
FACILE SYNTHESIS OF a-PHOSPHORYLATED a-AMINO ACIDS

Bonchul Ku and Dong Young Oh*

Department of Chemistry Korea Advanced Institute of Science and Technology P.O. Box 150, Chong-yang Ni, Seoul 131-650, Korea

Summary : Various α -phosphorylated α -amino acid derivatives were synthesized conveniently by the reaction of methyl α -methoxyhippurate and methyl α -methoxy-N-benzyloxycarbonylglycinate with phosphites under the Lewis acid. Hydrolysis of (<u>12</u>) with TMSI gave 2phosphonoglycine in quantitative yield.

Compared with the broad chemistry of glycine(1)¹ and α -carbon substituted α -amino acids, a few derivatives of α -heteroatom substituted α -amino acids², for example, α -methoxy, α -amino α -mercapto and α -halo α -amino acids as the unisolated intermediates have been prepared. Aminomethylphosphoric acid (2, AMPA)³ and its alkyl derivatives^{4,5}, which are known to increase the yield of sugar cane and to have antibacterial activity against several microoganisms have received much attention in recent years. 2-Phosphonoglycine (3)⁶ which has the structural feature of the combined molecular moiety of (1) and (2) is of a considerable interest to us. As a part of synthetic approaches to α -heteroatom substituted α -amino acids, we describe efficient synthesis of some α -phosphorylated α -amino acids.⁷

 $\frac{1}{\alpha} \qquad \frac{2}{\alpha} \qquad \frac{3}{2}$ Thus, methyl α -methoxyhippurate (<u>6</u>)⁸ and methyl α -methoxy-N-benzyloxycarbonylylycinate (<u>7</u>), readily prepared from α -hydroxyhippuric acid (<u>4</u>) and α -hydroxy-N-benzyloxycarbonyl glycine (<u>5</u>) with methanolic sulfuric acid were phosphorylated with phosphites under the Lewis acid to give various α -phosphono- α -amino acid derivatives (<u>8-12</u>). (Scheme I)

 $\begin{array}{c} 0 & 0 \\ R_{1}CNHCHCOH \\ OH \end{array} \xrightarrow{MeOH} R_{1}CNHCHCOMe \xrightarrow{P(OR_{2})_{2}(OR_{3})} R_{1}CNHCHCOMe \underbrace{12} \xrightarrow{TMSI(XS)} 3 \\ OH & OMe \end{array} \xrightarrow{P(OR_{2})_{2}(OR_{3})} R_{1}CNHCHCOMe \underbrace{12} \xrightarrow{TMSI(XS)} 3 \\ O=P(OR_{2})_{2} \end{array}$

Scheme I

The procedure for the phosphorylation is as follows; To a stirred solution of (6, 1mmol) or (7, 1mmol) and phosphites (1.1mmol) (A) in CH_2Cl_2 was added dropwise $BF_3 \cdot OEt_2$ (1.1mmol) at $-10^{\circ}C$ followed by warming up to rt (B) in THF was added dropwise $BF_3 \cdot OEt_2$ (1.1mmol) at $-10^{\circ}C$ and stirred for 5 min. TBAF (1mmol) was added dropwise, then the solution was warmed up to rt. Usual aqueous workup gave the crude products. Pure samples were obtained by SiO_2 column

Run	Substrate	Phosphite	Product ¹¹ (Yield %)	m.µ(⁰ C)	³¹ ρ nmr(δ in ppm)
1	6	P(0Me) ₃	<u>8</u> (78) ^a	108-109	19.380
2	<u>6</u>	P(OMe) ₂ (OSiMe ₃)	<u>8</u> (95) ^b		
3	6	P(OEt) ₃	<u>9</u> (72) ^a	110-112	16.799
4	<u>6</u>	P(OEt) ₂ (OSiMe ₃)	<u>9</u> (96) ^b		
5	<u>6</u>	P(OPr-i) ₃	<u>10</u> (70) ^a	115-116	14.712
6	<u>6</u>	P(Opr-i) ₂ (OSiMe ₃)	<u>10</u> (42) ^a		
7	<u>6</u>	P(OPh)3	<u>11</u> (36) ^a	oil	
8	<u>7</u>	P(OEt) ₃	<u>12</u> (88) ^a	79-81	16.554
9	<u>7</u>	P(OEt) ₂ (OSiMe ₃)	<u>12</u> (41) ^a		
10	7	P(OEt)2(OSiMe2Bu-t	$(12 (86)^{b})$		

Table I. Reaction of (6) and (7) with phosphites

a; Procedure (A) b; Procedure (B) employed. See text.

chromatography (EtOAc/n-Hex) and recrystallization (EtOH). The results were summarized in Table I. $BF_3 \cdot OEt_2$ was the Lewis acid of choice, since other acids (H_2SO_4 , $AlCl_3$, $TiCl_4$, $SnCl_4$) gave the product but in lower yield. Dialkyl trimethylsilyl phosphites⁹ were employed to obtain the better results using procedure (B) compared with the less reactive trialkyl-phosphites. Hydrolysis of (<u>12</u>) with TMSI (5 eqiv.)¹⁰ at rt in CHCl₃ gave the 2-phosphonogly-cine (3, m.p (^{0}C); 128-130, lit.; 130-132)⁶ in quantitative yield.

Reference

- 1. J.P. Greenstein, M. Winitz, "Chemistry of the Amino Acids", Wiley N.Y., 1961.
- Leading reference. See M.J. O'Donnel, W.D. Bennett, R.L. Polt, Tetrahedron Lett., 1985, 26, 695.
- 3. M.J. Puluer, T.M. Balthazor, Synth. Commun., 1986, 16, 733.
- 4. E.K. Baylis, C.D. Campbell, J.G. Dingwall, J.C.S. Perkin I, 1984, 2845.
- 5. I. Hoppe, U.Schollkopf, M. Nieger, E.Egert, Angew. Chem. Int. Ed. Engl., 1986, 24, 1067.
- 6. J. Rachon, U. Schollkopf, Liebigs Ann. Chem., 1981, 1693.
- Methyl α-amino diethylphosphonoacetate was found to be the important intermediate in the synthesis of β-lactam antibiotics. See; R.W. Ratcliff, B.G. Christensen, Tetrahedron Lett., 1973, 4645.
- 8. U. Zoller, D. Ben-Ishai, Tetrahedron, 1975, 31, 863.
- 9. D.Y. Kim, D.Y. Oh, Synth. Commun., 1986, 16, 859.
- 10. R.S. Lott, V.S. Chauhan, C.H. Stammer, J.C.S. Chem. Comm., 1979, 495
- 11. Characterization of <u>8-12</u>; <u>8</u>; ¹H nmr (CDCl₃, 6 in ppm); 7.26(m,5H), 7.04(d,1H), 5.46(dd, J(Hz)=22,9,1H), 3.85(d,3H), 3.82(s,3H), MS(EI, 70ev) 3.01(M), 105(100%), <u>9</u>; ¹H nmr; 7.53(m,5H), 5.46(dd, J=23,8,1H), 4.23(m,4H), 3.79(s,3H), 1.36(t,6H). MS; 329(M), 105(100%), <u>10</u>; ¹H nmr; 7.52(m,6H), 5.20 (dd, J=22,8,1H), 4.61(m,2H), 3.61(s,3H), 1.14(d,12H), MS; 357(M), 105(100%), <u>11</u>; ¹H nmr; 7.30(m, 16H), 5.21(dd, J=22,9,1H), 3.81(s,3H), <u>12</u>; ¹H nmr; 7.29(m,5H), 5.73(dd, J=22,9,1H), 5.09(s,2H), 4.88(dd,1H), 4.10(m,4H), 3.76(s,3H), 1.25(t,6H), MS; 359(M), 100(100%).

(Received in Japan 27 June 1988)